rrpack - Reduced-Rank Regression
Multivariate regression methodologies including classical
reduced-rank regression (RRR) studied by Anderson (1951)
<doi:10.1214/aoms/1177729580> and Reinsel and Velu (1998)
<doi:10.1007/978-1-4757-2853-8>, reduced-rank regression via
adaptive nuclear norm penalization proposed by Chen et al.
(2013) <doi:10.1093/biomet/ast036> and Mukherjee et al. (2015)
<doi:10.1093/biomet/asx080>, robust reduced-rank regression
(R4) proposed by She and Chen (2017)
<doi:10.1093/biomet/asx032>, generalized/mixed-response
reduced-rank regression (mRRR) proposed by Luo et al. (2018)
<doi:10.1016/j.jmva.2018.04.011>, row-sparse reduced-rank
regression (SRRR) proposed by Chen and Huang (2012)
<doi:10.1080/01621459.2012.734178>, reduced-rank regression
with a sparse singular value decomposition (RSSVD) proposed by
Chen et al. (2012) <doi:10.1111/j.1467-9868.2011.01002.x> and
sparse and orthogonal factor regression (SOFAR) proposed by
Uematsu et al. (2019) <doi:10.1109/TIT.2019.2909889>.